A Review of Statistical Failure Time Models with Application of a Discrete Hazard Based Model to 1Cr1Mo-0.25V Steel for Turbine Rotors and Shafts
نویسنده
چکیده
Producing predictions of the probabilistic risks of operating materials for given lengths of time at stated operating conditions requires the assimilation of existing deterministic creep life prediction models (that only predict the average failure time) with statistical models that capture the random component of creep. To date, these approaches have rarely been combined to achieve this objective. The first half of this paper therefore provides a summary review of some statistical models to help bridge the gap between these two approaches. The second half of the paper illustrates one possible assimilation using 1Cr1Mo-0.25V steel. The Wilshire equation for creep life prediction is integrated into a discrete hazard based statistical model-the former being chosen because of its novelty and proven capability in accurately predicting average failure times and the latter being chosen because of its flexibility in modelling the failure time distribution. Using this model it was found that, for example, if this material had been in operation for around 15 years at 823 K and 130 MPa, the chances of failure in the next year is around 35%. However, if this material had been in operation for around 25 years, the chance of failure in the next year rises dramatically to around 80%.
منابع مشابه
A Re-Evaluation of the Causes of Deformation in 1Cr-1Mo-0.25V Steel for Turbine Rotors and Shafts Based on iso-Thermal Plots of the Wilshire Equation and the Modelling of Batch to Batch Variation
The aims of this paper were to: (a) demonstrate how iso-thermal plots of the Wilshire equation can be used to identify the correct structure of this equation (which in turn enables a meaningful description of the creep mechanism involved in deformation to be made); and (b) show how a generalized specification of batch to batch variation could produce less conservative predictions of the time to...
متن کاملApplication of Multivariate Control Charts for Condition Based Maintenance
Condition monitoring is the foundation of a condition based maintenance (CBM). To relate the information obtained from the condition monitoring to the actual state of the system, it is usually required a stochastic model. On the other hand, considering the interactions and similarities that exist between CBM and statistical process control (SPC), the integrated models for CBM and SPC have been ...
متن کاملApplication of the Hot Spotting Method for the Straightening of a Large Turbine Rotor
Different problems may cause distortion of the rotor, and hence vibration, which is the most severe damage of the turbine rotors. Different techniques have been developed for the straightening of bent rotors. The method for straightening can be selected according to initial information from preliminary inspections and tests such as nondestructive tests, chemical analysis, run out tests and also...
متن کاملInfluence of Thermal Radiation Models on Prediction of Reactive Swirling Methane/Air Flame in a Model Gas Turbine Combustor
A numerical simulation of reactive swirling methane/air non-premixed flame in a new three-dimensional model combustion chamber is carried out to assess the performance of two thermal radiation models, namely, the Discrete Transfer Radiation Model and the P-1 Model. A Finite Volume staggered grid approach is employed to solve the governing equations.The second-order upwind scheme is applied for...
متن کاملConstrained Model Predictive Control of Low-power Industrial Gas Turbine
Nowadays, extensive research has been conducted for gas turbine engines control due to growing importance of gas turbine engines for different industries and the need to design a suitable control system for a gas turbine as the heart of the industry. In order to design gas turbine control system, various control variables can be used, but in the meantime, fuel flow inserting into combustion cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017